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EFFECT OF STREAMWISE AND PREFERENTIAL DIFFUSION 
ON CYLINDRICAL B U R K E - S C H U M A N N  FLAMES 

S.R.  Lee* and S .H.  Chung* 

(Received January 23, 1991) 

Effect of streamwise and preferential diffusion on cylindrical Burke-Schumann flame has been analyzed using perturbation 
method and Green's function technique. Results show that for large Peclet number, streamwise diffusion has little effect, while for 
small Pe, it is balanced with radial diffusion such that a finite minimum flame height exists. Preferential diffusion induces flame 
temperature variation along the flame surface and the results agree qualitatively with existing experimental data. It also shows 
that the symmetry in flame temperature variation by the sign of(Led) in two dimensional case does not hold in cylindrical flames 
due to focusing and defocusing effects of mass and thermal diffusion by the radial curvature of flame. 
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Radius of inner nozzle 
Radius of outer  cylinder 
a/b 
Specific heat  
Mass diffusivity of i-th species 
Element  of Green's  function 
Green's  function 
Defined in Eq. (A2) 
Defined in Eq. (18) 
Pe/2  
1-1/Lei 
Lewis number of i-th species( / l / (pDiCp))  
Unit  normal  vector  
Peclet  number ( = orb~ (2t/Cp) ) 
Heat  of combust ion per unit mass of fuel 
Radial  coordinate  
Coordinate  vector  
Coordinate vector  of the source 
Radius of curva ture  at f lame tip 
Surface 
Function defined in Eq. (20) 
Volume 
Veloci ty 
Mass fract ion of species i 
S t reamwise  coordinate  
F lame  height  in the leading order 

Greek Symbols 
an : (pe2-L/ln) 1/2 
~j : Coupling function 
F : Function defined in Eq.(22) 
~ : Funct ion defined Eq. (A41) 
8 ( r - r o )  : Dirac delta function 
0r : Funct ion defined in Eq. (A1) 
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Therma l  conduct ivi ty  
Eigen value 
(Yoo/aLeo)/(YFo/LeF) 
Density 
Stoichiometr ic  oxidizer  to fuel mass rat io 
Function defined in Eq. (A31) 

Superscripts 
0 : Leading order 
1 : First  order  
- : Stoichiometr ical ly  adjusted quant i ty  
* : State  with Lei= 1 

Superscripts 
D : Dirichlet  boundary 
F : Fuel 
i : i-th species 
N : Neumann  boundary 
O : Oxidizer  
S : Species 
T : Tempera tu re  
o : Nozzle  exi t  or source 

1. I N T R O D U C T I O N  

The  Burke-Schumann (B-S) f lame has been widely adopt- 
ed in studying diffusion f lame character is t ics  because of its 
convenience in analysis and in sett ing up exper iment  in a 
laboratory.  Burke and Schumann(1928) has predicted the 
f lame shapes through the analysis of species conservat ion  
equations in the coupling function formulat ion assuming 
unity Lewis numbers and balance of s t reamwise  convect ion 
and t ransverse  diffusion. It can be easily shown that  the f lame 
tempera ture  is uniform and is equal to the adiabat ic  one 
(Williams, 1985). 

Transverse  diffusion in B-S system can be neglected on the 
basis of the existence of the outer  tube and the axis  of 
symmetry.  However ,  the s t reamwise  diffusion can only be 
neglected when the s t reamwise  convect ion is large, that  is, 
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for large Peclet number Pe. Recent interests in the B-S flames 
with relation to the modeling of composite rocket propellants 
(Cohen. 1980) indicate that the streamwise diffusion should 
be accounted for, since typical length scale is the order of 100 
/z such that the Peclet number is expected to be small. 

Preferential diffusion due to the difference in intensities 
between mass and thermal diffusions, which can be character- 
ized by Lewis number Le, is considered to be an important 
factor affecting flame propagation, stability and extinction 
for premixed flames (Sivashinsky, 1983; Buckmaster and 
Ludford, 1982; Chung and Law, 1989; Law et al., 1982). 

Effect of preferential diffusion on diffusion flames has also 
been analyzed (Law and Chung, 1982; Chung and Law, 1983) 
which affects flame temperature and thereby extinction. It 
can be reasoned that such phenomena as tip opening, partial 
blowoff, and sooting height (Glassman and Yaccarino, 1981) 
in diffusion flame can be explained on the basis of prefer- 
ential diffusion. 

Accounting these effects of streamwise and preferential 
diffusions, Chung and Law(1984) analyzed the two- 
dimensional B-S flame showing that the flame temperature 
varies spatially depending on(Le-1) and Pc. However, the 
practical B-S flame is the cylindrical one where the focusing 
and defocusing effects of mass and thermal diffusions would 
demonstrate different characteristics compared to the two- 
dimensional one. 

Thus the objective of the present study is to analyze the 
effects of streamwise and preferential diffusions in the cylin- 
drical B-S flame. 

2. GOVERNING EQUATIONS 

Governing equations with streamwise and preferential 
diffusions in the cylindrical coordinates are(Burke and 
Schumann, 1928; Williams, 1988) 

pea/1?~+~) i ( i  a /  OY~\ a2YFI 

1 3 
(1) 

pe3(Y ' y -~ 'o )  1 ~1 3 { rO~ 'F]  

where r and z are the radial and streamwise coordinates, 
respectively, nondimensionalized with the outer tube radius 
b, T CpT/QYFo, Yr = YF/YFo, Yo = Yo/aYFo, T the 
temperature, Y the mass fraction, Q the heat of combustion 
per unit mass of fuel, a the stoichiometric oxidizer to fuel 
mass ratio, subscripts F,  O, and o the fuel, oxidizer, and 
condition at the nozzle exit, respectively, Le~=A/(oCpDA 
and Pe= ovb/(A/Cp). Here p is the density, v the streamwise 
velocity, Cp, A, and D~ the specific heat, thermal conductivity, 
and mass diffusivity, respectively, which are assumed con- 
stants. To suppress the effect of shear layer mixing near 
nozzle exit, pv is assumed uniform. 

Boundary conditions are 
O < Y < C , z = O  ; Y'F=I, T = T o  
~<~<1,~ 0 ;?o=?oo, f = f o  
0 < r < 1, z --  c~ ; bounded 
r=O, z>O ; 8(.) /8r=O(axisymmetric)  

(3) 

r = l ,  2>0 "3(.)/Or=O(adiabatic and imperme- 
able) 

where c = a/b and a the fuel nozzle radius. 

3. ANALYSIS 

Similar to the two dimensional case, Eqs.(1) and (2) ex- 
hibit exact solutions for several special cases and these cases 
will be considered first. 

3.1 Special Cases 
When the Lewis numbers are all unity, Eqs.(l) and (2) 

have the following Shvab-Zeldovich coupling functions 

p aC~j* [ i  3 / 3/?j~_ 323j l_a 
e W - ] r ~ k r ~ } - ~ - z Z  ] - , ,  j = S ,  T (4) 

where ~ s -  !7"F/LeF - f 'o /Leo and 13r= f 'F /LeF+ T.  
Superscript* indicates the case with unity Lewis numbers 
such that/3J = Y~- Yo and 2~ YF + T. 

For large Pc, characteristic z scale becomes large, hence 
the streamwise convection is much larger than the 
streamwise diffusion. Thus Eq.(4) becomes identical to that 
of the original B-S formulation(1928). For small Pc, how- 
ever, the streamwise diffusion can be stronger than the 
streamwise convection such that the original B-S solution is 
expected to break down. 

Using separation of variables, the solution of Eq.(4) be- 
comes 

~ G ]~(A.c) r Yoo)- Yoo}+2c(1+ oo, z.=~-d~)~ ) 

Jo(A~r)exp( P e ~ z )  (5) 

,8~.= (c2+ ~o)+2c ~ J l ( A ~ c ) j o ( A ~ r ) e x p ( P ~ _ ~ z  ) 

(6) 

where an= (Pc24-4A2n)l/2. Eqs.(5) and (6) show that the Pe 
influences an only. As Pe ~ co, (Pc-an)  --. -2A~/Pe and 
the solution approaches the original B-S solution. However, 
as Pe ~ O, ( P e - a , )  --* -2An and this is independent of Pc. 
Thus, the original B-S solution can not be applied to the small 
Pe limit. 

In the flame sheet limit, the fuel and oxidizer are complete- 
ly consumed and the flame location can be determined from 
Eq. (5) by setting/~J =0. These results are compared with the 
original B-S solution in Fig. 1 for over-(1~oo=0.4) and 
under-ventilated(]?oo=0.2) cases with c=0.5. This shows 
that the flame height was underpredicted by neglecting the 
streamwise diffusion. Especially for Pc=O, there exists a 
finite length of the flame height while it is zero if the 
streamwise diffusion is neglected shown in Fig. 2. 

For nonunity L e ,  Shvab-Zeldovich coupling function does 
not exist in general. However, there are two cases in which 
the coupling function formulation is possible. One is the case 
with Pe =0 and the other with Let  = Leo. These can be used 
to test the accuracy of the general Lewis number problem. 

For Pe=O Eqs.(1) and (2) becomes 

-r ~r \  3r ] ~ -  ' j = S ,  T (7) 
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Fig. 2 Flame heights as function of Pe 

{ c 2 ( l + u ) - u } + 2 c ( l + v ~  ~ JI(A,c) 

]o(A,r:)exp(-  A,z:) =0 (10) 

which is functions of c and u= Yoo/aLeo)/(YFo/LeF) only. If 
we consider the effect of Lewis number by defining effective 
mass fraction Y , ~ : -  Y,/Le~, then this solution is identical to 
the original B-S one using Y,.~:: instead of Y, for the case of 
Le,= 1. If Ler/Leo increases, then :it has the same effect of 
increasing Yoo or decreasing Yro from the definition of ~. 
Hence, it is easily conceivable that the flame height will be 
shortened for an overventilated flame while lengthened for 
underventilated one. 

Flame temperature can be found from Eqs.(8) and (10) as 
follows. 

G ( T j -  To) C p ( T : -  To) 
Yoo/aLeo) § ( ) % / L e r )  - Q (11) 

This indicates that the increase in Le, has the same effect of 
decreasing the boundary concentrations of reactants. Hence 
the flame temperature becomes higher(lower) than the 
adiabatic one as the Lewis number decreases (increases) 
from unity. 

Another type of special case is for Le~ = Leo = Le. In such 
a case there exists a couplng function for species as follows. 

(12) 

By defining Pe~:: = Pe Le, this becomes identical to the case 
using Pe~:: instead of using Pe for Le= 1. Since the flame 
height increases with Pe for Le= 1, it will increase by in- 
creasing Le for the present case.. Coupling function for 
temperature, however, does not exist in this case. 

3.2 Genera l  Case (Lei-~ 1) 
The solution of the elliptic partial differential equations for 

general Lewis numbers is sought assuming small (1-1/ Lei) 
and using it as a small parameter in perturbation analysis. 

Jump conditions at the flame sheet for general Lewis 
numbers are as follows(Chung and Law, 1983). 

{n.V( ~'r/ Ler) }r: = {n.V ( Y-o/ Leo) } r:- 
[n .V~]~,  ={n .V(  ~?r/Le~)} r,- (13) 

Since heat and reactant mass can not be accumulated at a 
sheet, it can be readily seen that the coupling functions should 
be chosen as ~s = Y~/Ler -~ 'o /Leo ,  ~T = Yr /LeF+ T to 
satisfy Eq.(13) in all orders. 

Equations(I) and (2) can be rearranged as follows. 

and the solution can be found as folows. 

-Le-~- Leo],=~A,J~(A,) ]~  (8) 
C 2 

+ L e r  .:,/l.J$ (,~.) jo~A~r)exp(--A.z) 

(9) 

The flame location ( r:, z:), determined from ~s = 0 becomes 

p 3/3r f l  3 / 3~_~\. 3~_] pe{ 1 _ I~gYF  
e -3-z - -~V-~-~r  ar ) *  8z 2 ~= \ LeF ] 3z (14) 

3YF~_ pe(L~eo- 1)0Yo 3z Oz (15) 

By dfining l i -  (1 -1 /Le , )  and using l r  as a small parameter, 
and Y,. can be expanded as follows. 

T =  T~  1FTI+ ''" (16) 
?,= ?o+b?:+... 
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Substituting into Eqs.(14) and (15) and rearranging terms of 
same order 

1~ t ' e  3z - l r 0 7 - I  r Or )+-3~--z~ J =0 (17) 

1~: r e 3 z - - ~ r ~ r  Or ]~- Or ]+ Oz ~ ~=n~, 

) :  T,S (18) 

where ~f- ~ * -  [;:/Le:, ~8~= Y : / L e , -  Yg/Leo, H r =  - 
Pea Y~ and Hs= - Pea{ Y~ (Is/IF) Y(f}/Jz, Since Eq. (17) 
should satisfy the boundary conditions, Eq,(18) should have 
homogeneous boundary conditions. 

Separation of variables can be used to find the solution of 
Eq.(17), however, the solution of Eq.(18) can not be found. 
Thus, Green's function technique has been adopted to find the 
solution (ref. Appendix).  

4. R E S U L T S  A N D  DISCUSSIONS 

The solutions of Eqs.(17) and (18) are 

( ~ e ~  ~ ~ .  2c ~, ]~(:.c) 

/ o ( d . r ) e x p ( ~ z )  (19) 

L~go 
n~__ J1 ('a'nC) e x p ( - ~ - ~ - z )  ,~do~ (~.) lo (,~.r) (20) 

- 

L e F - - 1  ~ P e z . ~ = l C J ~  

( f f ~ - z ) /  a. (21) 

with /7[ for 
overventilated case; 

t P e  ~ z ,  
~r=-2Peexp(~-z)[~=lfo r  

/lm n=l JO ',/in] .,u \ ~ / 

r f '  {]z(A.rf) + la(A.rg) ~dz + lo(A.r) 

z :  = Otto Y]  
U. +:,r ~-Zo A~-A~ • {A.tto(A.rf)], 

(a.r?) - A,Jo (a.r?) 11 (a.rT) )dzo] ~ V (22) 

underventilated case ; 
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B[ = F -  Pe e x p ( ~ e - z ) . ~  Jo (A. r )&/2  (23) 

Here, the zeroth order solutions /3 ~ are identical to that 
derived using separation of variables. 

The flame sheet location and temperature up to the first 
order m 1F can be determined from fl~ and "F:= ~0 
(r), z)) + IFT'(r), z)) =l~~ z}) +iriSh(r), Z}). This pertur- 
bation solution with equal Lewis numbers for fuel and oxid- 
izer, compared to the exact  solution of Eq. (12), has the same 
accuracy as the one in Chung and Law(1984) for ]Le~- 1I~0.3. 

Change in flame shape by Lewis number variations fs 
shown in Fig. 3 for small Peclet number of Pc=5.  For this 
over-ventilated case, flame becomes larger as LeF decreases 

since mass diffusion of fuel is faster than thermal diffusion. It 
has the same effect of increasing fuel flow rate or fuel mass 
fraction at the nozzle exit. Conversely, Leo has effect of 
decreasing flame length as it decreases. 

Especially interesting effect of preferential diffusion is 
flame temperature variation along the flame, which could 
affect such phenomena as tip opening(Ishizuka, 1983), local 
blow-off, and local soot formation rate, The leading order 
solution of Eqs.(19) and (20) shows the uniform flame 
temperature while the first order solution would exhibit 
flame temperature variation. Fiffure 4 shows the flame 
temperature variation of ar~ over-venti)ated flame along the 
streamwise direction for small Peclet number and Fig. 5 is for 
large Peclet number. For  LeF<I, flame temperature de- 
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creases in streamwise direction, having a minimum near the 
flame tip. This shows a possiblity of tip opening. For LeF > 
1, flame temperature is maximum at the tip, thus having a 
possibility of tip intensification. 

Experimental results (Ishizuka, 1983) show that the flame 
temperature decreases along the streamwise direction and 
flame tip opening occurs for hydrogen with inerts of N2, 
Ar, and CO~. For hydrogen with He, on the other hand, the 
flame temperature increases. This is because hydrogen has 
faster mass diffusion velocity compared to Nz, Ar, and CO2, 
thus LeF<I, while the velocity is comparable to He. the 
present results qualitatively agree with this. 

Flame temperature characteristics for LeF:r are similar 

to those of the two dimensional model (Chung and Law, 1984) 
except for Leo:~l. Results for two dimensional case was 
qualitatively symmetric for Leo > 1 and Leo< 1. However for 
the present axisymmetric case, result.,; show that for Leo > 1, 
flame is intensified at the tip while for Leo < 1, flame temper- 
ature has a minimum near the middle of the flame which 
indicated a possibility of local blowout. This can be attribut- 
ed to the presence of two principal radii of curvatures 
compared to one for two dimensional case. 

Flame temperature variation along the z axis by varying 
the Peclet numbers is shown in Figs. 6 and 7 for L e r ~  1 and 
Leo ~: 1, respectively. For LeF ~: 1, flame temperature distribu- 
tion is quite similar near the rim region and it deviates 
significantly near the flame tip. For Leo4:l, flame temper- 
ature distribution is quite different near the rim region and 
the tip temperatures are quite similar. 

The reason for this can be explained as follows. If the 
direction of diffusion is parallel (opposed) to that of convec- 
tion, convection diminishes(amplifies) the effect of prefer- 
ential diffusion(Law and Chung, 1982). Near the base of the 
overventilated flame, the direction of oxidizer diffusion is 
parallel to that of the convection. Therefore, as the Peclet 
number increases, the convection would reduce the effect of 
nonunity Lewis number of oxidizer on flame temperature. 
Hence, the flame temperature approaches the adiabatic one. 
For fuel, however, since its direction of diffusion is opposite 
to that of convection, nonunity Lewis :number effect of fuel is 
amplified. 

In contrast, the direction of oxidizer diffusion is opposite to 
that of convection in the upper portion of the flame. Hence 
the flame temperature tends to deviate more from te 
adiabatic one as Pe increases. Since the two directions are 
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parallel for fuel in this region, the flame temperature tends to 
approach the adiabatic one. 

In two dimensional model with nonunity LeF, effect of 
preferential diffusion diminishes as Pe increases since the 
directions of fuel mass diffusion and convection are parallel. 
Thereby, the temperature at the tip approaches the adiabatic 
one. However in the present cylindrical model, such an effect 
is not pronounced. 

Experimental results of Ishizuka(1983) show that the tip 
opening occurs at a constant concentration and is indepen- 
dent of flow velocity except for very small convection 
velocities. Based on this, we have tested whether the tip 
opening is controlled by the flame stretch or not. 

In a uniform flow field, a steady curved flame has a flame 
stretch proportional to v/RT, where Rr is the radius of 
curvature(Matalon, 1983; Chung and Law, 1984b). At a 
constant concentration, the flame stretch v/Rr  increases with 
the flow velocity since Rr decreases with v. This indicates 
that the flame stretch alone can not explain the tip opening 
phenomena properly. 

By nondimensionalizing the stretch with a local character- 
istic flow t ime(A/oCt)Iv 2, the nondimensional stretch be- 
comes (~l/pC~)/vRr = b/PeRr. Thus we have plotted PeRt as 
a function of Yoo and Pe in Fig. 8. This shows that PeRt is 
independent of v and also of Yoo for Pe > 20. Note here that 
(A/pCp) is assumed constant in the present model. 

In a realistic situations, (A/pCD is sensitive to Yoo through 
the flame temperature, thus PeRr will vary with Yoo. Ther- 
efore the tip opening condition of a constant concentration 
agrees with the constant nonimensional stretch of(~t/pCp)/ 
vRT, meaning that the tip opening can be explained based on 
the nondimensional stretch. 

5. CONCLUDING REMARKS 

Effect of streamwise and preferential diffusion was anal- 
yzed for cylindrical B-S flame by using perturbation method 
with Lei-1 as a small parameter. Results show that flame tip 
opening(intensification) could occur for LeF< 1 ( > 1 ) .  
Compared. to the two dimensional problem, flame temperatur- 
e behavior is not symmetric to the sign o f (Le i -1 ) .  This can 
be attributed to the geometrical factor of fuel defocusing and 
oxidizer focusing in mass diffusion. Finally, tip opening can 

be explained on the basis of the nondimensional stretch. 
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A P P E N D I X  
�9 Green's Function Solutions of  Eq.(17) and (18) 

From Eq.(17) and (18), if we express 

B~(r, z) = O~(r, z )exp( -~-z )  (A1) 

then 0j becomes the solution of the Helmholtz equation of 

Pe2-0#- V20# = hj (A2) 

where h i=0 in the leading order and h~=Hjexp(-Pe  z/2) 
in the first order. Boundary conditions are 
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N "  00~-0,  r=0,1  (A3) 
O n -  

D : Oj=f, z = 0  (A4) 
0r=0, z - "  co (A5) 

where N and D indicate Dirichlet and Neumann boundaries 
respectively, 3/3n the outward normal gradient, and f the 
transformed boundary condition with f = 0  in the first order. 

go ( z )  = 2 fo ~ rG (rlro) dr 

g.(z)  = ~ f o ' r G ( r l r o )  Jo(A.r) ds, n ~  l 

(A16) 

By substituting it to Eq.(A6), the transformed boundary 
value problem becomes 

(1) Green's function formulation 
The Green's function formulation of Eqs. (A2)~  (A5) be- 

comes 

-V~G(r[ro) + k2G(Hro) = a ( r -  ro) (A6) 
�9 0 ( 3 _  o 

N .  O n -  (A7) 

D"  G = 0  (A8) 

where k=Pe/2 .  From Eqs.(A2) and (A6) 

f .  = iv. { Osa ( r -  ro) - GhA dV~ 
1 .  

{ GV2 0j O, V2g}dV~ 

(A9) 

Using Green's theorem, the LHS of Eq.(A9) becomes 

J...LIG ~176 - e'a- 7} ds" a.. 

: fDr { G ~: -- Oj ~Gnr ,} dSr W~ fN r( [ G OOJ ~r -- ' S'~rr ' OG ~ ds" 

(z=0) 

and the RHS becomes 

-- "d~  ~ + k2 go= 2ro6 (Z -  Zo) (A17) 

__ d 2 g .  2 ro 
dz 2 + (k2+/12n) gn= J~n) Jo(A,ro) ~ (Z -  Zo), n ~ l 

(A18) 

with the boundary conditions of 

g~(0) =0 (A19) 
g~(~)  =bounded, n ~ 0  

By substituting 

2 ro g, (z) = ~ J 0  (J, ro) U~ (z) (A20) 

into Eq.(A18). it becomes 

d2 U, + ~ r -  (k2+j~)  U n = ( ~ ( Z - Z o )  (A21) 

U, (0) =0, U, (c~) =bounded, n_>0 (A22) 

The solution of Eqs. (A21) - (A22) is the same as that of the 
following O.D.E. 

f {o ja ( r - ro ) -GhAdVr=O~(ro ) -  f rGhMV~ (Al l )  

From Eqs.(A10) and (Al l )  

OAro) =fv.G(rlro) h~(r) d V r -  f 
D 

(z=0) 

aG(rlro) dSr 
On, 

f(r) 

(A12) 

and from the symmetry of the Green's function 

G (rlro) = G (ro[r) (A13) 

Oj(r) = f VToG(rlro) h~(ro) dV, o- f 
(z=0) 

OG(rlr~ dS, 
(~nro o 

f (ro) 

(A14) 

the problem reduces to finding a solution of Green's function 
of Eqs. (A6) - (A8) 

(2) Green's function solution 
The solution of the Green's function can be found from the 

eigenfunction expansion. If we expand G (r[ro) in Fourier- 
Bessel series 

G (rl to) = go + ~=g. (z) A (A.r) 

then from the orthogonality 

(A15) 

d2 Un , [ L2 , :2~ ~ - v  ~n T^,o U.=0,  O<z<zo, Z o ~ z < l  

/.1.(0)=0, U.(oo) =0 

u . ( ~ ) = u . ( ~ ) ,  [ -  dv" l'~ 
L dz j,o- 

(A23) 

(A24) 

and then the solution becomes 

...o l 
exp(-?z)sinh( -Zo, Z>Zo J 

(A25) 

and the Green's function solution is 

Pe �9 Pe , 4to[ exp( -~Zo)s ,nh ( -~ - -z ) ]  
G(r]ro, =~ [  e x p ( _  p ~ z ) s i n h ( ~ Z o )  j (A26) 

4ro]o,J.ro) . . . .  [ exp(- - '?Zo)s inh(~-z)]  Z<Zo + 
.~--', a.Jo(A.) j o , a . r ,  ~ exp(--'~-z)sinh(~-Zo]J z~zo  

k ~ ] \ /u / 

(3) Leading order solution 
The leading order is homogeneous equation with h~=O 

from Eqs.(A2) and (A14) and since 

3G 8G 
~-~- ~=~ = - ~ -  ~=o (A27) 

the leading order solution becomes 
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o _ P e  ~ P e  ~G . 
3 ) - e x p ( ~ - z ) f  F(ro){exp(  -~-zo)~-}~o=od, o 

(A28) 

and F and 0 indicates the fuel and oxidizer side respectively 
in the leading order flame sheet limit. The above equations 
have the following double integrals for ro and Zo. 

where F(ro) is the boundary condition at z 0. Hence from 
the boundary condition and Eq.(A25), it becomes 

t \ Le,=" L ,  e o /  L C O )  \ L e F  L e o /  

J~ (A.c)  P e  - a~ 

c 2 ~ 2c ~ ]I(A~c) Pe a. 

(A30 )  

(4) First order solution 
Th first order equation has homogeneous boundary condi- 

tions such that f (ro) = 0 from Eq. (A14). Thus 

f l J = e x p ( ~ - z ) f v r o G ( r l r o ) H j ( r o ) e x p ( - ~ - z o ) d V r  o (A31) 

where 

- P e  a~?~ H s = -  ~ a r~0 io Y3] HT= c3z ' tw 3z[ Y ~ + ~  

with 

a~ f_Fa#01 a,7 o _[a o l 
dz L OZ Jfuel side '  aZ --  k OZ aoxl .s lde 

Therefore the first order solution becomes 

l e x  P C  | ro 

l Pe L e o -  1 " ro 

where 

r = c (1 + u)ll (A,c) (Pe - ct,)/{AJoz (A,) } (A34) 

(a) Overventilated case 
The double integral are as follows 

f r (') dVro = f y  fr ,o (.) drodzo (A35) 

foCldVro= f f "  f'oC)drodzo+iT, f ' C )  droz~ (A36) 

where r?(zo) is the flame location in the leading order for a 
given zo, and Zs is the leading order flame height. 

The first order solution from Eqs.(A32) and (A33) are as 
follows_ 

Bs~ = (1 Leo 1)  Leo-1  
LeF--1 fl~ LeF-- 1 zPe ~,,:lr 

e x p ( ~ z ) / a .  (A37) 

Pe . zj C',. 

jot nryj]aZo~- 2 . ~ l  Un 2A r - Zo 
n = l  JO ~ A n )  JO m=l  

m * n  
02 

~2 ri z~- • {A,do(,~,rD ], (Amr?) -- ,tdo(&r?) ]i (&r?) }dzo]==-F 
tim - -  r 

(A38) 

(b) Under-ventilated case 
The double integrals are 

f ( . )dVro=fPf '  (.)drodzo (A39) 
o J r J~ 

which has same/3's ~ as Eq. (A37), and ,81 is 

B~= F -  Peexp( P~-z)~_l]o(A.r) 3./2 (A41) 

where 

2exp ( - a~Zi) sinh (a~z/2) /~,  z <- Zs 1 
& =2r exp(-  a~z/2)[(z + 1/a.) - {Zi+exp(- a.ZD/a.}]/a~, | 

z~z,] 


